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The response to perturbations and to stochastic noise of a laser below threshold subjected to an intracavity
periodic frequency modulation is theoretically studied. It is shown that, when the modulation frequency is
close to the cavity axial mode separation but yet detuned from exact resonance, the laser exhibits a strongly
enhanced sensitivity to external noise, which includes large transient energy amplification of perturbations in
the deterministic case and enhancement of field fluctuations in presence of a continuous stochastic noise. This
large excess noise is due to the nonorthogonality of Floquet laser modes which makes it possible continuous
energy transfer from the forcing noise to transient growing perturbations.

PACS numbd(s): 42.60.Mi, 05.40-a

In recent years an increasing and considerable interest hasrmal mode, thus resulting in large noise variance levels
been devoted to the study of noise in non-Hermitian physicatlose to the instabilitysee[3,9] and Eq.(6) below]. In non-
systems, and many theoretical and experimental works inormal systems, amplification of noise may largely exceed
different physical contexts, including hydrodynam|ds-4]  the expected level of a normal system, as shown in recent
and nonlinear opticf5—7], have revealed a rather universal works on Couette and Poiseuille hydrodynamic flds3].
feature of these systems to show some form of “exces3he enhanced amplification of noise can be traced to the
noise” as compared to common normal systems. In the opronorthogonality of modes; this circumstance, however, as
tical context, much attention has been payed to the study afhown in a very general framework by Farrell and loannou
non-Hermitian laser cavities, where the nonorthogonality of 3,4], is a necessary but not a sufficient condition to observe
resonator cavity eigenmode@ongitudinal or transverge excess variance levels, which requires, besides lack of mode
[5,6] or of polarization eigenmoddg] leads to an enhance- orthogonality, also the capability of the system to support
ment of spontaneous-emission noise in the lasing mode, exransient growth of perturbations despite the asymptotic lin-
pressed by the Petermann excess noise fa8toA different  ear stability of the system. In this case, a dynamical ampli-
manifestation of excess noise in non-normal systems, whicfication of noise, with a variance level well above that an-
has been recently recognized in the hydrodynamic contexicipated by the decay rate of modes, is possible indeed. This
but not yet in nonlinear optics, is the enhancement of varivariance enhancement effect should be therefore observable
ance levels sustained by a non-normal system close to aso in non-normal active optical systems capable of support-
instability when subjected to a continuous stochastic forcingng transient growth of perturbations and should be regarded
[1,3,4. It is well known that any physical system close to aas a further and distinctive feature of non-Hermitian cavity
bifurcation point shows some universal dynamical featuresoptics.
such as critical slowing down, spectral narrowing, and noise In this Rapid Communication we demonstrate that a laser
amplification[9]. In particular, amplification of noise in a with an internal periodic modulation of the optical frequency
typical stochastically driven normal system near an instabil{10—13 operated just below threshold for oscillation is an
ity basically depends on the decay rate of the most unstablexample of a non-normal system in nonlinear optics that ex-
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hibits large excess of variance for the field fluctuations whens asymptotically stable. This implieg<g:,, where the
subjected to a continuous noise. This excess noise is a sigareshold for laser oscillatiomy,,, is attained when the real
nature of the nonorthogonality of laser modes and is physipart of the most unstable eigenvalue. éfcrosses zero. No-
cally due to an excess gain that makes possible transiefite that the Langevin equatiort$), as derived by field ex-
amplification of spectrally narrow perturbations despite theyansion in terms of longitudinal cavity eigenmodes, are
linear stability of the nonlasing solution. As compared to¢oypled in the presence of the intracavity phase modulation,
previous analyses on excess noise in lagges(6] and ref- ¢ "\whenA +0. Diagonalization is possible by introduction
erences therejnin this work the nonorthogonality of modes of the set of Floquet modes, which represent the natural basis

does not involve transverse, longitudinal, nor polarizationyf modes of the frequency-modulated lage#]; these are
eigenmodes of the laser, but time-dependent periodic Floqugfefined by

modes that are the natural eigenmodes of a frequency-
modulated lasef13]. (@) ]

The starting point of our analysis is provided by a rather |“(Z’t)>:; Vi exg2min(z-1)], ©)
standard model of intracavity laser frequency modulation
(FM) in a laser cavity with a spectral gainline much broaderyherev(® is the ath eigenvector ofd corresponding to the
than the cavity free spectral range0-13. We consider a gjgenvalueu,, . After expanding the intracavity fielfi(z,t)
ring cavity of lengthL containing a gain medium, a fre- on the basis of Floquet modeB(z,t) == ,f,(t)|«), from

quency limiter that determines the gain bandwidth pf theEqs.(l) it follows that the expansion coefficients(t) sat-
cavity, and an electro-optic phase modulator that varies pgsfy the uncoupled Langevin equations

riodically the optical cavity length at a frequeney, close to

the longitudinal mode separatian,=2c/L of the cavity. fa:Mafcﬂ” Nu (4)
After expanding the intracavity electric fiel on the basis

of longitudinal ring cavity eigenmodes by settifg(z,t)  where (7,(t))=0, (%5(t")n.(t"))=K,eds(t'—t"), and
=3 Fn(t)exp(—2mint)exp(2minz), wherez is the longitudi- K_,=1 is the excess noise factor for the mdde. As usual
nal spatial coordinate along the cavity, scaled to the cavity5], it turns out that ,=(a'|a'), where|a) is the adjoint
lengthL, andt is time normalized to the modulation period mode, given bya)=3 v @exg2min(z—t)], v/® is the
Tm=27/ 0y, the semiclassical coupled-mode equations foreigenvector of the adjoint matrixd ™ corresponding to the

the amplitudes-,, read[10,11] eigenvaluex® , and(f|g) stands forf5dzf*(z)g(2); nor-
iA malization has been chosen such thate)=1 and({a'|8)
Fo=(—2miny+g,—)F,+ ?(Fn+1+ Frop)+é&, (1) =0, [14]. In presence of a phase modulation, the Floquet

modes|a) are in general not orthogonal. This can be seen,
(N=0,-1,42, ...), where y=(w.—wy)/ oy is the fre- for instance, by observing thét| 8)==.v{* v(’ and that,
quency detuning parametety{<1), g, is the round-trip for A#0, the matrixA is not normal, i.e.,A does not com-
gain for thenth mode,| is the cavity lossA is the single- Mute with its adjoint4 . A direct calculation of the commu-
pass modulation index introduced by the phase modulatofator[.4,A"] shows in fact that it scales like A(w./wg),
and the dot stands for the derivative with respect to time. Avanishing when no modulation is applied £0) or when
simple model for the spectral gay, is provided byg,=g the spectral bandwidth of the gain is infinite {/wy—0).
_nZ(wc/wg)Z, whereg is the gain of the central mode  The former case is trivial and describes the dynamics of the

=0, which is assumed to be tuned at the center of the gai,{ongitudinal normal modes of the free-running laser. The lat-
line, and w, is the spectral bandwidth of the gainline ter case corresponds to the laser operated in the i_deal FM
(wc/wy<1), which is assumed to be independent of the gaif€gime, where the normal modgs) reduce to the ideal
parametery (see, for instance12]). Other effects, such as Bessel ~ modes |a)=exdil sin(2mz—2mt)lexd 2maiz
frequency pulling and cavity dispersion effects, will be not —2mai(1+Wt] («=0,£1,£2,...),I'=A/(2my) being the
considered here for the sake of simplicity, although theireffective modulation index10,12,13. Note that the spec-
effects would not change substantially the basic dynamics dfum of a Bessel normal mode extends over an interval of
the frequency-modulated lasgk3]. In Eq. (1), £,(t) are in-  frequencies of width~2I'wy,, which diverges asy ap-
dependent Gaussian complex stochastic variables with zeRyoaches zero, i.e., when the synchronous modulation regime
mean and correlatiofé,(t') & (t"))= €5, 5(t' —t"), which 1S attamed. This implies that, near the zero frequency detun-
provide a standard semiclassical model of noise in a lasel?d. finite spectral bandwidth effects of the laser gain may
such as the spontaneous emission noise of the (aser for n_ot be neglectgd, and loss of mode orthc_)gonallty occurs. The
instance[5]). In absence of the stochastic noise sources, théingular behavior of the system neg+0 is responsible for
Langevin equationl) have the deterministic zero solution the well-known transition of laser operation from the FM
F,=0 (n=0,+1,+2,...), corresponding to the laser be- "€gime to the pulsed FM mode-locking that occurs as the

ing below threshold. This solution is stable provided that thd'equency detuning parametgy| is decreased toward zero,
matrix A in the linearized dynamics, given by the frequency detuning at which the transition takes
place being given by yr~(2m) IN"¥—-AY2+(A

. o @c\? +2A2N?) Y212 whereN=(wy/w,) is the normalized spec-
Anm=| —2miny+g=I-n 0g Sn,m tral gain bandwidth[13]. A typical behavior of the laser
thresholdg,, as a function of the frequency detuning param-
i 5(5 s ) @) etervy near the transition region is shown in Fig. 1. Note that,
2 Tnmel T Cnm-1 far enough from the zero frequency detuning, the laser
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FIG. 1. Behavior of the laser threshold as a function of the FIG. 2. Energy growth rate as a function of normalized time
frequency detuningy. The vertical dashed line ay=vy;~3.7  for a few values of the frequency detuning Curve(1), y=103;
X 10~ 4 marks the transition from FM oscillation to the pulsed FM curve (2), y=4x10"%; curve (3), y=3.7X10"%; curve (4), y=3
mode-locking. The threshold curve turns out to be symmtericx10™4; curve(5), y=2Xx10"*; curve(6), y=0. For each value of
around the synchronous modulation conditipa 0. Parameter val- the frequency detuning the laser gain has been chosen 3% below its
ues ares=0.05, wg/ w.=100. threshold value. The other parameter values Are0.05, wg/w
=100.

threshold approaches that of the free-running laser,dg.,

~1, and in this case the laser is operated in the undistorte@pectral broadening of the perturbation and, for the laser be-
FM regime, where the finite bandwidth of the spectral gain igow threshold, in the final decay of it. The typical temporal
neg||g|b|e However, ab’}’| is decreased towamj.l_’ there is scale over which amplification and Subsequent decay of the
an increase of the lasing threshold, which is due to the spederturbations take place is determined by the number of tran-
tral broadening of the FM modes. If the laser is operatecbits in the cavity needed to spectrally broaden the perturba-
below threshold, i.e., if the gain parametgis chosen below tion, which is in turn inversely proportional to the frequency
the threshold curve shown in Fig. 1, in absence of the stodetuningy.

chastic driving field any initial perturbation at tinte=0 is In presence of a continuous stochastic forcing, such as
damped out and the zero solution is finally reached at that provided by spontaneous emission in the gain medium,
— . However, the transient dynamics of the decay, which ighe lack of orthogonality of Floquet modes and the capability
determined by the degree of normality of the systeffy  ©Of the deterministic dynamical system to support transient
changes drastically when approaching the transition regiorEn€ergy growth allow the Langevin equatiois to sustain an
where high levels of amplification are possible before theexcess of variance for the field fluctuations larger than that
perturbation is damped out. If we consider the energy of thé&xpected if the system were nornid]. As the system is
field stored in the cavity,u(t)=[/idzF(z,t)F*(z1)] asymptotically stable and the noise sources are assumed to
=3, |F.(1)|2 we may introduce an energy growth r&gét) be 5-correlated Gaussian stationary processes, a stationary
defined as the maximum energy that can be stored in thetatistics fqr the random amplitudBs is reached, vyh|ch can
cavity at timet taken over the ensemble of initial field per- P& determined using standard methddse, for instance,
turbations of unitary energyG(t) represents therefore the [16]. In particular the spectral matri§ (), which is de-
upper boundary to the energy amplification at titnghysi- fined as the Fourier transform of the correlation functions
cally realizable for any given initial field perturbation. The (Fa(t)Ff (t+7)), is given by S(w)=e(A+iwI) (A"
energy growth rate(t) can be calculated in terms of the —i®Z)”*, whereZ is the identity matrix anct is the vari-
matrix A asG(t)=|exp(At)||?, where| -| denotes the stan- ance of the noise. A measure of the non-normality of the
dard 2-norm of a matrixsee[4]). If the system were normal, System is provided by the ensemble average of the energy
it would not be possible any energy growth at any time, i.e.Stored in the cavity(u), which can be expressed g&17]

G(t) is a decreasing function of time a@{t) —0 on a time

scale of the order of the inverse of the damping rate of the € =

most unstable normal mode. This also occurs if the system is (u)y= 2—f F(w)do, 5)
non-normal provided that the matri¥+.4" is asymptoti- T

cally stable[15]. Conversely, transient energy amplification

is possible if the largest eigenvalue.df- A" is positive[3].  where the spectrunfF(w) is given by F(w)=¢€ 1Tr(S).

An inspection of Eq(2) reveals that this condition is full- Note that, sinceF(z,t))=0, the variance of field fluctua-
filled provided that the laser gain exceeds the threshold valugons at the planez in the cavity is given by(|F(z,t)|?)

for 'ghe free-running lasdii.e.,g>1), a condition that can be =3, (Fa(OFF (t)yexd 2mi(n—1)(z—1)], so that{u) provides
fullfilled when the laser is operated close the transition req measure of thepatial average of the variance of the field
gion of Fig. 1. Figure 2 shows a typical behavior of the flyctuations in the cavity. Differently, for a fixed positian
energy growth ratés(t) for a few values of the frequency inside the cavity(u) represents théme average of the field
detuningy, indicating the possibility of high transient ampli- fluctuations at that position. For detuning values where the
fication of energy in the transition region between FM OSC”'System is(neaﬂ» normaL the mean energy stored in the
lation and FM mode-locking. The high levels of transient cavity results from a balance between dissipation and forcing

amplification can be physically understood by observingfor each normal mode of the cavity, and one obt4itg
that, due to the excess gain, any initial perturbation that is

spectrally narrow is amplified by the system in the intial
transits inside the cavity. However, in the meanwhile the (u) |=—E € (6)
modulator transfers energy to sidebands modes, resulting in a norma @ 2N,
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g 10! ————— threshold. As can be seen, whanis positive, and thus tran-
g 10° . sient amplification of perturbations is possible in the deter-
2100} A . ministic dynamics, a large enhancement of field fluctuations
; 104+ ] by several orders of magnitude is predicted when the laser is
g 107 © - operated near the transition region. We note that, although
nj C 4) (5 |

1 T = - this excess noise has been predicted to occur for the FM laser
Frequency detuning ¥ x 107 operated below threshold, we envisage that the strong sensi-

tivity of this system to noise should be also observable when
the laser is operated above threshidé].

In conclusion, we have shown that an intracavity
frequency-modulated laser operated close to threshold can
sustain a large excess of field fluctuations as a result of the
nonorthogonality of Floquet laser modes, which makes pos-
sible the continuous transient amplification of noise. Owing
where\ ,=Re(u,). However, for detuning values where the to the analogy between spatial and temporal propagation of
system becomes non-normal, the mean energy stored in tlugtical fields[19], we envisage that a similar manifestation
cavity can reach much higher levels due to the continuousf excess noise should occur also when transverse degrees of
transient amplification of the noise. This excess of field fluc-freedom are considered instead of longitudinal ones. In par-
tuations can be defined by the ratio=(u)/(u),o;mal [SEE  ticular, a plane-plane laser in a stripe geometry with trans-
Egs.(5) and(6)], whereK=1 andK =1 for a normal system verse gain guiding and tilted mirrors, capable of producing
[3]. Figure 3 shows a typical behavior of the excess variancbeam walk-off out of the gain region, is expected to show the
factorK as a function of the frequency detuningfor a few  same noise features as the detuned FM mode-locking studied
values of the below-threshold parameter(g—1)/(gy,  in this work, with the tilting angle playing the same role as
—1) (y<1 andy>0 if the laser is above the free-running the frequency detuning parameter.

<

FIG. 3. Excess variandg¢ as a function of frequency detuning
for a few values of the below-threshold parameyetsee texk
Curve (1), y=0.9; curve(2), y=0.7; curve(3), y=0.5; curve(4),
y=0; curve(5), y=—0.2. Parameter values ar&:=0.05, wq/w,
=100.
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